文章编号:1000-324X(2020)03-0324-05

可见光下 Bi₂WO₆纳米片高效光降解四环素的机理研究

魏鑫¹,卢占会¹,王路平¹,方明²

(华北电力大学 1. 数理学院; 2. 环境科学与工程学院 资源环境系统优化教育部重点实验室, 北京 102206)

摘 要: 作为一种窄带隙半导体材料, Bi₂WO₆ 在光催化降解有机污染物上具有很大的应用潜力。研究采用水热法合成了 Bi₂WO₆ 纳米片,并在可见光照射下研究其对四环素的光催化降解。利用 XRD、FESEM、TEM、吸收光谱等 对材料进行结构和形貌的表征。实验发现,在 pH=8 的四环素溶液中加入 50 mg Bi₂WO₆ 纳米片,可见光照射 130 min 后,85%的四环素(50 mL,50 mg/L)被降解。实验还研究了 Bi₂WO₆ 纳米片光电化学性质,通过加入不同的自由基 捕获剂研究了光催化降解四环素的反应机理。结果表明,Bi₂WO₆ 纳米片具有较高的电子密度和电子空穴分离效率 是其具有良好光催化性能的原因。

关键 词: Bi₂WO₆纳米片; 四环素; 光催化; 可见光

中图分类号: TQ174 文献标识码: A

Mechanism Study of Tetracycline High Efficient Photodegradation by Bi₂WO₆ Nanosheets under Visible Light Irradiation

WEI Xin¹, LU Zhanhui¹, WANG Luping¹, FANG Ming²

(1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China; 2. MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

Abstract: As a narrow band gap semiconductor, Bi_2WO_6 has great application potential in photo-degradation of organic pollutants, such as tetracycline. In present work, Bi_2WO_6 nanosheets were successfully synthesized by a hydrothermal method and the photo-degradation of tetracycline under visible light irradiation were investigated. XRD, FESEM, TEM and absorption spectra were used to characterize the structure and morphology of the material. It was found that when adding 50 mg Bi_2WO_6 nanosheets into 50 mL of tetracycline solution at pH=8, 85% tetracycline (50 mL, 50 mg/L) was photodegraded within 130 min. The photoelectron-chemical experiments and free radical capture experiments were performed to explore the photo-degradation mechanism. The results show that good photocatalytic performance of Bi_2WO_6 nanosheets are ascribed to the high electron density and photoelectron-hole separation efficiency.

Key words: Bi₂WO₆ nanosheets; tetracycline; photocatalytic; visible light

随着社会经济的快速发展, 医疗健康问题引起 了极大关注。人类大量使用各种药物, 如抗生素等 来提高人体的健康水平,但过度使用抗生素对自然 生命体的生存和进化带来了严重的影响^[1]。例如,四

通讯作者: 卢占会, 教授. E-mail: luzhanhui@ncepu.edu.cn; 方 明, 副教授. E-mail: mfang@ncepu.edu.cn LU Zhanhui, professor. E-mail: luzhanhui@ncepu.edu.cn; FANG Ming, associate professor. E-mail: mfang@ncepu.edu.cn

收稿日期: 2019-07-26; 收到修改稿日期: 2019-10-24

基金项目: 国家自然科学基金(U1607102, 21377132, 91326202); 中央高校基本科研业务费专项资金(2019MS040) National Natural Science Foundation of China (U1607102, 21377132, 91326202); Fundamental Research Fund for the Central Universities (2019MS040)

作者简介:魏 鑫(1996-), 女, 硕士研究生. E-mail: weixin@ncepu.edu.cn

WEI Xin(1996-), female, Master candidate. E-mail: weixin@ncepu.edu.cn

环素常被添加到药物和饲料添加剂中,过度使用的 四环素被排放到天然水中会导致严重的生态环境问 题,甚至诱发超级细菌。为了消除四环素等抗生素 对自然环境的影响,人们采用了多种方法,如吸附 法、电解法、微生物降解法、光催化法等去除四环 素^[2-3],其中光催化法以其简便、经济、节约能源的 特点而得到广泛应用^[4-5]。

Bi₂WO₆的光学带隙大约为 2.0 eV, 是一种可用 于可见光催化的窄带隙钙钛矿型半导体材料^[6]。 Bi₂WO₆还具有成本低、稳定性好、无毒、光催化性 能好、带隙窄等优点, 是一种有前途的催化剂^[7]。有 研究将其用于光催化降解四环素等有机污染物^[8-10]。 研究报道主要探讨制备条件、产物形貌等因素对 Bi₂WO₆ 光催化机理和性能的影响规律, 但对于材料 本身的物理化学性质与催化性能的关系探讨得不多, 对材料光催化机制的理解不够深刻。

基于此,本工作采用水热法制备了 Bi₂WO₆纳 米片,并研究了其对水中四环素的光催化降解能力。

1 实验方法

1.1 实验试剂

Na₂WO₆、NaOH、浓 HCl 购自国药集团化学试 剂有限公司; BiCl₃购自上海阿拉丁生化科技有限公 司; 四环素购自阿法埃莎公司。

1.2 Bi₂WO₆纳米片的制备

在不断搅拌的条件下,将2gBiCl₃和1mL浓HCl的混合溶液缓慢滴加到0.98gNa₂WO₆和15mL去离子水的溶液中,然后转移到100mL高压釜中,并向悬浮液中加入1gNaOH,置于190℃烘箱中保温18h。反应结束高压釜冷却至室温后,用去离子水过滤洗涤收集产物。对比实验中改变NaOH的添加量(0和3g)。

1.3 Bi₂WO₆纳米片的表征

利用紫外可见光光度计 UV-2700 (Shimadzu, UV-2700) 测量紫外-可见吸收谱。用 SmartLab SE (Rigaku Corporation, Cu Kα)型 X 射线衍射仪分析样 品的晶相,采用能量色散光谱(EDS)、透射电子显微 镜(TEM)和高分辨率透射电子显微镜(HRTEM, JEOL JEM-2010, 200 kV),场发射扫描电子显微镜 (FESEM, FEI Sirion-200)研究样品的形貌和微观结 构。利用 CHI 760e 电化学工作站测试材料的光电化 学性能:将 30 mg 研磨样品粉末分散在萘酚的无水 乙醇溶液中,滴加在玻碳电极表面作为工作电极, Pt 电极用作对电极, Ag/AgCl电极用作参比电极,并 且在实验中使用具有滤光片(<400 nm)的 300 W Xe

灯(17.8 mW/cm²)作为光源。

1.4 光催化实验

在光催化降解四环素的实验中,将 50 mg 样品 和 25 mL 四环素溶液(100 mg/L)同时加入到石英 管中,再加入 25 mL 去离子水配成 50 mg/L 的四环 素溶液。实验开始时,石英管在黑暗中连续搅拌 60 min 以达到吸附--解吸平衡,然后使用 500 W Xe 灯(26.6 mW/cm²)作为光源,每 15 min 取出 4 mL 溶 液,并用过滤器过滤(0.45 μm)。采用紫外--可见吸收 光谱仪测试滤液的吸光度,取 357 nm 处的吸收值计 算溶液浓度。通过加入微量的 HNO₃和 NaOH 溶液 来调节溶液的 pH。

2 结果与讨论

2.1 Bi₂WO₆纳米片的表征及结果分析

图 1 为 NaOH 添加量分别为 0、1、3 g 时制备 样品的 XRD 图谱,由图可见,当 NaOH 添加量为 1 g 时,所制备样品在 2*θ*=10.7°,21.5°,28.2°,32.7°, 35.7°,47.0°,55.7°,58.5°,68.4°,75.9°,78.3°的衍射 峰,分别对应于 Bi₂WO₆标准卡片(JCPDS 39-0256) 的 (020)、(040)、(131)、(200)、(151)、(202)、(331)、 (262)、(253)、(193)和(402)晶面的衍射峰,相应的晶 格参数为 *a*=0.547 nm,*b*=1.643 nm,*c*=0.544 nm。这 说明添加 1 g NaOH 制备的样品是纯 Bi₂WO₆,而不 添加和添加 3 g NaOH 时,产物 XRD 谱图有很多杂 峰,说明产物不是纯的 Bi₂WO₆^[11-12]。

添加1gNaOH制备的Bi₂WO₆纳米片的微观形 貌如图2所示。从图2(a)可以看出,样品微观上由 大量超薄纳米片组成。图2(b)是样品的TEM照片, 从中可以看出纳米片的形状不规则,且纳米片的直 径在100~600 nm左右。从HRTEM照片(图2(c))可 以清楚地看到明显的晶格条纹,条纹间距为0.272 和0.273 nm,分别对应 Bi₂WO₆的(002)和(200)

图 1 不同 NaOH 添加量制备的样品的 XRD 谱图

Fig. 1 XRD patterns of the sample prepared with different NaOH additions

图 2 Bi₂WO₆ 纳米片的 FESEM 照片(a), TEM 照片(b), HRTEM 照片(c)和能谱图(d)

Fig. 2 FESEM image (a), TEM image (b), HRTEM image (c), and Energy Dispersion Spectrum (d) of Bi₂WO₆ nanosheets

晶面,结果进一步证明产物是Bi₂WO₆。能谱分析(如图 2(d)所示)进一步显示,样品中主要含有Bi、W和O元素(Cu和C元素来自铜网格),没有发现其它元素,说明样品的纯度很高^[13-14]。

图 3(a)为 Bi₂WO₆纳米片的紫外--可见吸收光谱, 可以看出,所得产物在 200~900 nm 范围内有一个 位于 400nm 左右的宽吸收峰。为了获得 Bi₂WO₆纳 米片的带隙,根据库贝尔卡--芒克(Kubelka-Munk)理 论,对图 3(a)的数据进行处理,得到 Bi₂WO₆纳米片 的带隙约为 1.78 eV(图 3(b)),表明这种 Bi₂WO₆纳米 片可以在很宽的范围内吸收大部分的可见光^[15],将 具有非常高的可见光利用效率^[16]。

2.2 Bi₂WO₆纳米片的光催化活性研究

我们进一步研究了 NaOH 添加量对样品在可见 光照射下的四环素降解能力的影响(图 4(a))。实验发现,添加 1 g NaOH 制备的 Bi₂WO₆纳米片的光催化 能力最强。经过 140 min 的可见光照射,添加 1 g NaOH 制备的 Bi₂WO₆纳米片对四环素的去除率可 达到 47%以上。根据式(1),采用一级动力学模型来 拟合四环素的光催化数据(结果见图 4(b)):

$$\ln\left(\frac{C_0}{C}\right) = k \cdot t \tag{1}$$

其中, C_0 是四环素初始浓度, $C \ge t$ 时溶液中四环素 的浓度, k 是一级反应速率常数(min⁻¹)^[17]。从图 4 (b) 可以得到, NaOH 添加量为 0, 1, 3 g 时, k 分别为 5.22×10⁻⁴, 4.1×10⁻³, 7.77×10⁻⁴, 可见 NaOH添加量为

图 3 Bi₂WO₆纳米片样品的紫外-可见吸收谱(a)和带隙图(b) Fig. 3 UV-Vis absorption spectrum (a) and band gap plot of Bi₂WO₆ nanosheets (b)

图 4 不同 NaOH 添加量制备的 Bi₂WO₆ 对四环素的光降解 曲线(a)及其 lnC₀/C 曲线(b)

Fig. 4 Photodegradation of tetracycline by products prepared with different NaOH additions (a), and corresponding curves of $\ln C_0/C vs$. time

1g时制备的Bi₂WO₆对四环素的光降解能力最强。 图 5(a)为可见光照射下溶液 pH 对四环素的光降解 实验的影响。pH=2时,仅有少量四环素被光降解。随着 pH 升高,四环素的光降解效率明显增加,当 pH=8时,光照 130 min 后 85%的四环素被降解。进一步提高 pH,光降解能力略有下降。图 5(b)为图 5(a) 数据的一级动力学模拟曲线。通过线性拟合可得 pH=2、4、6、8、10 和 12 溶液中的一级反应速率常数 k 分别为 0.003、0.003、0.006、0.014、0.014 和 0.012,说明 Bi₂WO₆ 纳米片在碱性条件下对四环素 具有更好的光催化性能,且在 pH=8~10 时对四环素 具有最大的降解效率。

图 5 添加 1 g NaOH 制备的 Bi₂WO₆纳米片在不同 pH 溶液 中对四环素的光降解曲线(a)及其 lnC₀/C 曲线(b)

Fig. 5 (a) Photodegradation of tetracycline in the solution with different pH and corresponding curves of $\ln C_0/C vs$. time (b) of Bi₂WO₆ nanosheets prepared with addition of 1 g NaOH

图 6 自由基捕获实验

Fig. 6 Radical capturing experiments

Triangle curve is the tetracycline photocatalytic experiments with adding Bi_2WO_6 nanosheets as photocatalysts, and circle curve is experiment without photocatalysts

为了研究 Bi₂WO₆ 纳米片光催化降解四环素的 机理,在可见光照射下向反应溶液中加入不同的自 由基捕获剂。图 6 显示自由基捕获剂对光催化实验 的影响(三角), 其中草酸铵是空穴捕获剂, 对苯醌是 超氧自由基捕获剂,异丙醇是羟基捕获剂。添加催化 剂时,当加入异丙醇或草酸铵时,溶液浓度都有所 下降,加入异丙醇时溶液浓度下降得更多,但加入 对苯醌后, 溶液浓度表观上增加了。为了探究出现这 一现象的机制,我们进行了不添加催化剂的实验(圆 形)(图 6),可以看出,当加入异丙醇或草酸铵时,不 添加催化剂时溶液浓度基本不随时间发生变化;加 入对苯醌时,四环素表观浓度同样增加。结合添加催 化剂的实验,添加对苯醌四环素浓度表观增加是由 于对苯醌和四环素的显色反应造成的,也就意味着 对苯醌的加入造成光催化剂失去活性。对比有无催 化剂的光催化实验可以看出,异丙醇对光催化影响 不大, 草酸铵对光催化具有较弱的影响, 而对苯醌 在本实验中起着很重要的作用。这说明实验中降解 四环素的自由基主要是超氧自由基,空穴也有一定 的影响, 而羟基对四环素的光降解几乎没有贡献。

图 7(a)为Bi₂WO₆纳米片的瞬态响应光电流曲线, 从中可以看出,Bi₂WO₆纳米片具有很强的光生电流, 说明材料中的光生电子密度很大,大量的光生电子 可以进一步与水中溶解氧反应生成超氧自由基,

图 7 Bi₂WO₆ 纳米片在可见光照射下四个周期光电流信号 的稳定性实验(a)和 Bi₂WO₆ 纳米片的奈奎斯特频谱(b) Fig. 7 (a) Signal stability of photocurrent of Bi₂WO₆ nanosheets under visible light irradiation for four cycles and (b) Nyquist

spectrum of Bi₂WO₆ nanosheets

图 8 Bi₂WO₆纳米片的循环伏安图 Fig. 8 CV curve of the Bi₂WO₆ nanosheets

同时也说明光生电子和空穴的分离非常有效,界面电 荷转移非常快。图 7(b)是 Bi₂WO₆纳米片的奈奎斯特 频谱,奈奎斯特曲线频率测试范围为1Hz~100 kHz。 从图中可以看出,高频区由一个半圆弧组成,低频 区接近一条直线,半圆弧与电极-电解质界面处的电 荷转移电阻(即法拉第电阻)有关,而直线则归因于 电解质离子进入或离开电极孔的扩散^[18-19]。

图 8 为样品的循环伏安曲线,样品在-0.66 和 0.22 V 对 Ag/AgCl 电极显示出一对稳定且明显的氧 化还原峰,其中正值为还原峰,负值为氧化峰,这 对氧化还原峰可归因于样品和电极之间直接的电子 转移。同时,阴极和阳极峰值之间的电位差约为 880 mV,表明电极表面发生的反应过程是一个准可 逆过程。如图 8 所示,电流值很大,表示电子转移过 程非常快速,可以极大地提高光催化的效率^[20]。

3 结论

本研究成功制备了 Bi₂WO₆ 纳米片,纳米片的 直径在 100~600 nm。Bi₂WO₆ 纳米片的带隙为 1.78 eV,有较好的可见光响应能力。光催化实验显 示这种 Bi₂WO₆ 纳米片对四环素具有很好的光催化 降解能力,它在碱性条件下的光催化性能更佳。添 加不同捕获剂的光催化实验结果显示,超氧自由基 起着重要作用,空穴也具有一定的作用。光电化学 实验表明这种 Bi₂WO₆ 纳米片良好的光催化能力来 自于高效的电子空穴分离能力,表面电荷转移速度 快,电子空穴对不易重组,光电子生成密度大,因 此有大量的光生电子与溶解氧反应生成超氧自由 基。综合上述结果,Bi₂WO₆纳米片是一种对抗生素 降解很有潜力的光催化纳米材料。

参考文献:

- SHI LEI, LIANG LIN, MA JUN, *et al.* Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. *Ceramics International*, 2014, **40(2)**: 3495–3502.
- [2] CAO YANG, LEI XIAN-YU, CHEN QIAN-LIN, et al. Enhanced

photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe₂O₄. *Journal of Photochemistry and Photobiology A-Chemistry*, 2018, **364**: 794–800.

- [3] GAO YUAN, LI YAN, ZHANG LIANG, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. *Journal of Colloid and Interface Science*, 2012, 368: 5540–546.
- [4] ZHU MING-YU, CAI YA-WEN, LIU SHU-YA, et al. K₂Ti₆O₁₃ Hybridized graphene oxide: effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environmental Pollution, 2019, 248: 448–455.
- [5] FANG MING, TAN XIAO-LI. Review on the mechanism of metal surface plasmon resonance enhanced photocatalysis of semiconductor nanomaterials. *Journal of Nantong University (Natural Science Edition)*, 2019, **18(2)**: 1–13.
- [6] CHEN YI-LIN, LIN BI-ZHOU, WANG SEN-LIN. Design of the open experiment for a hydrothermal synthesis of Bi₂WO₆ nanoplate photocatalyst. *Laboratory Science*, 2018, 21(5): 45–49.
- [7] XUE WEN-JING, PENG ZHI-WEI, HUANG DAN-LIAN, et al. In situ synthesis of visible-light-driven Z-scheme AgI/Bi₂WO₆ heterojunction photocatalysts with enhanced photocatalytic activity. *Ceramics International*, 2019. **45(5):** 6340–6349.
- [8] JONJANA SITTIKORN, PHURUANGRAT ANUKORN, THONGTEM TITIPUN, et al. Decolorization of Rhodamine B photocatalyzed by Ag₃PO₄/Bi₂WO₆ nanocomposites under visible radiation. *Materials Letters*, 2018, 218: 146–148.
- [9] QIN FEI-YU, CUI PENG-ZHEN, HU LEI, et al. Construction of multi-shelled Bi₂WO₆ hollow microspheres with enhanced visible light photo-catalytic performance. *Materials Research Bulletin*, 2018, **99**: 331–335.
- [10] ZHANG ZHI-JIE, WANG WEN-ZHONG, SHANG MENG, et al. Low-temperature combustion synthesis of Bi₂WO₆ nanoparticles as a visible-light-driven photocatalyst. Journal of Hazardous Materials, 2010, 117(1/2/3): 1013–1018.
- [11] ZHU HONG-SHAN, TAN XIAO-LI, TAN LI-QIANG, et al. Magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb²⁺ and Cd²⁺. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5206–5213.
- [12] TAN XIAO-LI, LIU GE, MEI HUI-YANG, et al. Fabrication of GO/Na₂Ti₃O₇ composite and its efficient removal of 60 Co (II) from radioactive wastewater. *Science China-Chemistry*, 2019, 49(1): 145–154.
- [13] WANG XIANG-XUE, YU SHU-JUN, WANG XIANG-KE. Study on metal organic framework material in radionuclide removal. *Journal of Inorganic Materials*, 2019, 34(1): 17–26.
- [14] WANG XIONG, TIAN PENG, LIN YING, et al. Hierarchical nanostructures assembled from ultrathin Bi₂WO₆ nanoflakes and their visible-light induced photocatalytic property. *Journal of Alloys and Compounds*, 2015, 620: 228–232.
- [15] ZHU HONG-SHAN, YUAN JIN-YUN, TAN XIAO-LI, et al. Efficient removal of Pb²⁺ by Tb-MOFs: identifying the adsorption mechanism through experimental and theoretical investigations. *Environmental Science: Nano*, 2019, 6(1): 261–272.
- [16] WANG XIANG-XUE, CHEN LONG, WANG LIN, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 62(8): 933–967.
- [17] QIN JI-BO, CHEN NAN, FENG CHUAN-PING, et al. Fabrication of a novel p-n Heterojunction BiOCl/Ag₆Si₂O₇ nanocomposite as a highly efficient and stable visible light driven photocatalyst. *Mate*rials Science & Engineering B, 2018, 231: 86–92.
- [18] WANG FEI, YANG HUA, ZHANG HAI-MIN, et al. Electrochemical performance of morphologically different Bi₂WO₆ nanostructures synthesized via a hydrothermal route. Journal of Electronic Materials, 2017, 46(1): 182–187.
- [19] ZHANG LI-DE, FANG MING. Nanomaterials in pollution trace detection and environmental improvement. *Nano Today*, 2010, 5(2): 128–142.
- [20] LIU HUI, GUO KAI, DUAN CONG-YUE, et al. A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi₂WO₆ microspheres. Materials Science and Engineering C, 2016, 64: 243–248.